
Inventor: Jeffery S. Steinman JPL Case No. 18414

Contractor: Jet Propulsion Laboratory NASA Case No. NPO-18414-I-CU

Date: January 17, 1992

SYNCHRONOUS PARALLEL SYSTEM FOR EMULATION

AND DISCRETE EVENT SIMULATION

AWARDS ABSTRACT

i0

15

20

A synchronous parallel system for emulation

and discrete event simulation having parallel nodes

responds to received messages at each node by generating

event objects having individual time stamps, stores only

the changes to the state variables of the simulation

object attributable to the event object and produces

corresponding messages. The system refrains from

transmitting the messages and changing the state

variables while it determines whether the changes are

superseded, and then stores the unchanged state variables

in the event object for later restoral to the simulation

object if called for. This determination preferably

includes sensing the time stamp of each new event object

and determining which the new event object has the

earliest time stamp as the local event horizon,

determining the earliest local event horizon of the nodes

as the global event horizon, and ignoring events whose

time stamps are less than the global event horizon. Host

processing between the system and external terminals

enables such a terminal to query, monitor, commmand or

participate with a simulation object during the

simulation process.

('):! 'i k.,;__.... ,....

(_IA5 A_C _Se__pF]_ |8_ L4_I-C U) SYNCHRONOUS
pAi._.Lt_t SYS|FM F_R £MULATI!]N AND OlSCI<ETE

6ViHT SIM!IL ATIu,_4 Patent Application (NASA)
r_rl _QP_

N?2-240&5

Unclas

NASA CASE NO.

PRINT FIG.

NOTICE

/" t

NPO-18414-I-CU

1

The invention disclosed in this document resulted from

research in aeronautical and space activities performed under

programs of the National Aeronautics and Space Administration. The

invention is owned by NASA and is, therefore, available for

licensing in accordance with the NASA Patent Licensing Regulation

(14 Code of Federal Regulations 1245.2).

To encourage commercial utilization of NASA-Owned inventions,

it is NASA policy to grant licenses to commercial concerns.

Although NASA encourages nonexclusive licensing to promote

competition and achieve the widest possible utilization, NASA will

consider the granting of a limited exclusive license, pursuant to

the NASA Patent Licensing Regulations, when such a license will

provide the necessary incentive to the licensee to achieve early

practical application of the invention.

Address inquiries and all applications for license for this

invention to NASA Patent Counsel, NASA Resident Office-JPL, Mail

Code 180-801, 4800 Oak Grove Drive, Pasadena, CA 91109.

Approved NASA forms for application for nonexclusive or

exclusive license are available from the above address.

Serial Number:

Filed Date:

07/880,211

January 21, 1992 NRO-JPL

MAY 15 1992

5

JPL Case No. 18414

NASA Case No. NPO-18414-I-CU

Attorney Docket No. JPL/001-92

Serial No. _ "2/(:_0_ ::), =_ / /

Filing Date_ "/ /- D. [- c/ D..

Co,-_tr._,:t I'.;o. NAS7-918

Cont:-a,.:tor CaltechlJPL

L_-- -_ll_aAPPLI C_, ON 91

SYNCHRONOUS PARALLEL SYSTEM FOR EMULATION

AND DISCRETE EVENT SIMULATION

ORIGIN OF INVENTION

The invention described herein was made in the

performance of work under a NASA contract, and is subject

to the provisions of Public Law 96-517 (35 USC 202) in

which the contractor has elected not to retain title.

i0

15

2O

25

30

TECHNICAL FIELD

The invention relates to discrete event simulation

of objects using a plurality of synchronous paral-

lel computers in communication with each other so that

the objects being simulated may interact.

BACKGROUND ART

Discrete event simulation of objects on a single

digital processor is not very difficult. In the standard

approach, all events associated with a simulated object

are tagged with a time index, inserted in an event queue,

and maintained in increasing time order by the event

queue as events in the simulation are scheduled at dis-

crete points in time. Simulation proceeds in the com-

puter by processing the event from the queue having the

lowest time index. The resulting simulation of events in

sequence is thus defined by the time indices.

Processing an event can affect the state variables

of an object and can schedule new events to occur in the

future for one or more simulated objects. This

interaction of cause and effect requires that new events

generated be tagged with time indices greater than or

equal to the current simulation time index. The gener-

ated new events are simply inserted into the event queue

i0

15

2O

25

30

35

2

in their proper time index sequence.

Discrete event simulation on parallel processors is

necessarily very different from the single processor

approach described above. (See D.A. Reed, "Applications:

Distributed Simulation," Multicomputer Networks:

Messaqe-Based Parallel Processinq, The MIT Press,

Cambridge Massachusetts, pp. 239-267, 1987.) While it is

clear that real world objects may interact concurrently

in time, it is not always obvious how to rigorously

simulate them on parallel processors. The event queue

approach presents the problem of having each processor of

the parallel array continually determine whether it

should process the next event in its queue, or wait

because a new event with an earlier time index is

arriving from another processor. Moreover, the

simulation program would have to be optimistic that

events tagged for simulation at a later time index would

not be dependent upon the results of other events

triggered by events simulated conservatively up to the

time of the next event in the queue.

Various techniques have been proposed to solve this

problem, each with its respective strengths and

weaknesses. This background discussion will cover only

the parallel simulation techniques that are relevant to

the understanding of the present invention.

The simplest time driven approach to parallel simu-

lation makes use of the causality principle as il-

lustrated in J.S. Steinman, "Multi-Node Test Bed: A

Distributed Emulation of Space Communications for the

Strategic Defense System," Proceedings of the Twenty-

First Annual Pittsburgh Conference on Modeling and

Simulation, Pittsburgh, 1990. The causality principle

allows for events scheduled between time 0 and time T to

be processed conservatively in parallel up to the event

horizon at time T.

i0

15

2O

25

3O

35

3

The event horizon for a cycle is defined to be the

point in time where an event to be processed has a later

time index than the earliest new event generated in the

current cycle. Simulation errors can occur if events are

processed optimistically beyond the event horizon. For

this scheme, known as the time-bucket approach, the

minimum time delay T between an event and any of its

generated events must be known in order to predict the

event horizon. Parallel processing can then take place

in cycles of duration T. As long as the minimum time

interval between events and the events that they generate

is known, the simulation can proceed in time cycles of
duration T.

This time-bucket approach has the important property

of requiring very little overhead for synchronization.

For example, each processor in the Hypercube array of

processors need only synchronize with all of the other

processors at the end of every cycle, after which all

processors increment their simulation time in unison by

the amount T and proceed to simulate other scheduled

events.

Despite the low synchronization overhead of the

time-bucket approach, there are some major drawbacks to

that approach. The cycle duration T must be large enough

so that each processor is able to process enough events

to make parallel simulation efficient. However, the

cycle duration T must also be small enough to support the

required simulation fidelity. Another important problem

is the balancing of the work load. Because of the

synchronous nature of the time-bucket approach, when one

processor has more work to do than other processors in a

cycle, the simulation will be inefficient. Because of

these drawbacks, a more flexible approach is needed.

Optimistic discrete event simulation approaches must

allow for event simulation to occur in error, but when

5

i0

15

2O

25

30

4

one does occur, a roll-back algorithm is needed to undo

the erroneously simulated event. Various optimistic

approaches have been proposed (L. Sokol, D. Briscoe and

A. Wieland, "MTW: A Strategy for Scheduling Discrete

Simulation Events for Concurrent Execution," Proceedings

of the SCS Distributed Simulation Conference, Vol. 19,

No. 3, pp. 34-42, 1988; K. Chandy and R. Sherman "Space

Time and Simulation," Proceedings of the SCS Distributed

Simulation Conference, Vol. 21, No. 2, pp. 53-57, 1989.)

By far the most popular optimistic approach is the time-

warp operating system (D. Jefferson, "Virtual Time," ACM

Transactions on Programming Languages and Systems, Vol.

7, No. 3, pp. 404-425, 1985) in which simulation errors

are handled by the generation of antimessages which cause

the simulation to roll back to a time before the simula-

tion error occurred.

Because some events can generate future events, and

they in turn can generate other future events, cascading

of the error may occur which complicates the roll-back

algorithm. Messages and state variables must be saved

for each processed event in order to be able to implement

a rollback algorithm if it becomes necessary.

Traditional time-warp implementations have required

a large amount of memory overhead. That memory overhead

could be better used for the simulation data. While it

is true that as long as the roll-back overhead is small

compared to the average amount of time it takes to

process an event, the time-warp approach will have high

performance, but larger data processing units typically

execute programs faster, thereby increasing the occur-

rences of time warp. In that case, the memory overhead

of time warp could reduce the overall simulation

performance to an unacceptable level.

35 STATEMENT OF THE INVENTION

5

i0

15

2O

25

30

35

5

A new method has been developed for synchronous

parallel environment for emulation and discrete event

simulation. Central to the new method is a technique

called breathing time buckets (BTB) which uses some of

the conservative techniques found in the prior-art time-

bucket synchronization, along with some of the optimistic

techniques of the prior-art time-warp approach.

An event is created by an input message generated

internally by the same processor or externally by another

processor. A system for routing messages from each

processor to designated processors, including itself

(hereinafter referred to as a "multirouter" directs the

message to the processor that is intended to process the

event. The events are defined through various virtual

functions by the user during initialization. It is

through these virtual functions that events are

processed. Note that multiple messages for an object

with the same time index will generate multiple events

for thate object, not a single event for multiple

messages. The events are thus initialized by data

contained within the messages. After initialization the

messages are discarded, and each event is attached to its

own simulation object.

A processor optimistically performs its calculations

for the event and generates messages to schedule future

events to be generated in the same processor or any other

processor, but the generated messages are not immediately

released. Changes required in the variables of the

object affected by the event are calculated and stored.

Immediately afterwards the changes calculated are

exchanged for the values of the affected variables of the

object. If for any reason the variables should not yet

have been affected, such as because an event processed by

another object generates a message for the affected

object in its past, the event being generated must be

5

i0

15

20

25

6

rolled back. That is accomplished in the BTB algorithm

by exchanging back the computed changes for the old

values of the affected variables and canceling any

messages generated but not yet released. In that manner,

the shortcomings of the prior-art time-bucket technique

are overcome in most situations by permitting events to

be optimistically processed, and if it results that a

message should not have been processed, the processed

event is rolled back and any messages generated in the

processing of the event are discarded.
External interactions are made possible by using a

host program connected to the parallel computers that

services communications between external user modules and

the parallel computers. A useful interactive capability

is the ability for a user to query or monitor the state

of simulation objects while the simulation is in

progress. For this purpose, the simulation system of

parallel computers constitutes a large data base of

objects that can be accessed from a user module. Further

useful interactive capabilities are to issue commands

from the outside world (which schedules events within the

parallel simulation), and to synchronize external modules

dynamically.
The novel features that are considered character-

istic of this invention are set forth with particularity

in the appended claims. The invention will best be

understood from the following description when read in

connection with the accompanying drawings.

3O

35

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating the object-

based architecuture at a single node of the invention.

FIG. 2 is a timing diagram illustrating three

successive cycles of operation of the invention and the

event horizons thereof.

i0

15

20

7

FIG. 3 is a block diagram illustrating the

architecture of the main program of the invention.

FIG. 4 is a block diagram illustrating the operation

of the invention using a time warp protocol.

FIG. 5 is a block diagram illustrating the operation

of the embodiment corresponding to Fig. 4 whenever an

antimessage is transmitted.

Fig. 6 is a timing diagram illustrating the

operation of a preferred embodiment of the invention.

Fig. 7 is a timing diagram illustrating one method

of operating the embodiment corresponding to Fig. 6.

Fig. 8 is a timing diagram illustrating the

preferred method of operating the embodiment

corresponding to Fig. 6.

Fig. 9 illustrates how processed events are globally

sorted in accordance with the invention.

Fig. i0 is a graph illustrating one aspect of the

performance of the invention.

Fig. II is a timing diagram illustrating two regimes

for responding to an earlier viewed event of the

simulation.

Fig. 12 is a block diagram illustrating the host
interactive architecture of the invention.

25

3O

35

DETAILED DESCRIPTION OF THE INVENTION

The object-based architecture of the simulation

process of the invention carried out at each node is

illustrated for a single simulation object in Fig. i.

Discrete event simulation of objects begins with some

basic steps for a single processor, such as a processor

at a node of a Hypercube. First an event object is

initiated by an input message 10 for a simulation object

received via a multirouter 11 from the same processor or

another processor. Time tagged messages received are

queued in an event library 12. Multiple messages for a

I0

15

20

25

3O

35

8

simulation object with the same time index will generate

multiple event objects for the simulation object.

All event objects are user-defined as to their

inherent capabilities from a base-class of generic

simulation objects, where the term "objects" refers to

object oriented programming techniques used to simulate

physical objects assigned to processors for simulation of

events, such as missiles, airplanes, tanks, etc., for

simulation of war games, for example.

Event objects 14 are initialized by data contained

within the messages received. After an event object is

initialized, the message for it is discarded. Each event

object is then attached to its own simulation object by a

pointer to the simulation object 15.

Processing an event object in a processor is done

in multiple steps that are written by the user into the

simulation program. In the first step, an event object

optimistically performs its calculations and generates

messages 13 to schedule future events. However, the

event object of the input message 10 is not immediately

executed, i.e., the state of the simulation object, is

not changed, and the messages for future event objects

are not immediately released. Instead, the state changes

and the generated messages are stored in the event object

14. Only the changes of the simulation object state

variables are stored within the event object 14.

In the second step, the state variable changes that

were computed in the first step are exchanged with the

simulation object 15 so that the event object then has

the old state values and the simulation object has the

new values. For example, the state variables may consist

of i000 bytes. If the event requires only four bytes to

be changed, only those four bytes are saved and

exchanged. If rollback is later required, another ex-

change restores the previous state of the simulation

i0

15

20

25

9

object.

This feature, referred to as "delta exchange,"

reduces memory used in optimistic simulations at the

expense of having to supply the exchange code in the

simulation. Performing a delta exchange involves

negligible time, so that rollback is carried out

efficiently when needed without the need of special-

purpose hardware.

The simulation program may include as part of delta

exchange, the step of each time writing out to files

these deltas. The simulation may then be rewound if

rollback is necessary through several pairs of steps

resulting in a reverse delta exchange for several events

in sequence 16, thus restoring the changes in reverse
order from the files.

A delta exchange completes the first phase of

carrying out an event, but as just noted, although the

state of the simulation object is changed in the first

phase, it can be rolled back. In the second phase,

further processing is carried out, such as cleaning up

memory, or sending messages 13 out to this and/or other

processors and to graphics for record or display. This

phase is carried out only after the event object is known

to be valid so that there is no possibility of a rollback

being required. Consequently, it is usually performed

much later in time than the two steps in the first phase,

but always without changing the state variables of the

simulation object.

3O

35

SPEEDES Internal Structure:

While other multiple-synchronization systems (or test

beds) have been developed, one reason for the success of

SPEEDES is its unique object-oriented design. To begin

this discussion, we first break event processing into

some very basic steps (see Figure i).

I0

5

i0

Creating an Event

An event is created by a message. Note that multiple

messages for an object with the same time stamp will

generate multiple events, not a single event with

multiple messages. Events are separate objects in C++ and

should not be confused with simulation objects. User-

defined events inherit capabilities from a base-class

generic event object, which defines various virtual

functions. It is through these virtual functions that

events are processed.

15

An important optimization is in the use of free lists for

memory management. SPEEDES manages old messages and

events in a free list and reuses them whenever possible.

This speeds up memory management and avoids the memory

fragmentation problem.

20

25

Initializing an Event

Events are initialized by data contained within the

message through a user-supplied virtual initialization

function. After the event is initialized, the message is

discarded into a free list. Each event is then attached

to its own simulation object (i.e., the event object

receives a pointer back to the simulation object).

Processing an Event: Phase 1

30

35

Processing an event is done in multiple steps that are

all supported with C++ virtual functions written by the

user. In the first step, an event optimistically performs

its calculations and generates messages to schedule

future events. However, the simulation object's state

must not change. In addition, messages that would

i0

II

generate future events are not immediately released.

The event object itself stores changes to the simulation

object's state and the generated messages. Only variables

affected by the event are stored within the event object.

Thus, if a simulation object contains 50,000 bytes and an

event requires changing one of those bytes, only that one

byte is stored within the event. There is no need to save

copies of all 50,000 bytes of the object in case of

rollback.

Delta Exchange

15

20

In the second step, the values computed in Phase 1 are

exchanged with the simulation object. This exchange is

performed immediately after the first step. After an

exchange, the event has the old state values and the

simulation object has the new values. Two successive

exchanges (in the case of rollback) then restore the

simulation object's state.

25

When an event is rolled back, there are two possibilities

concerning messages that were generated by the Phase 1

processing. One is that the messages have already been

released. In this case, antimessages must be sent to

cancel those erroneous messages. The other is that the

messages have not been released yet. In this case, the

messages are simply discarded.

3O

35

The Delta Exchange mechanism greatly reduces memory

consumption in optimistic simulations. However, it has

the drawback of forcing the user to supply the exchange

code. Errors could creep into the simulation if care is

not taken in this step.

i0

15

12

Performing the Delta Exchange method normally involves a

negligible amount of time. Thus, sequential simulations

are still efficient even when this extra step is

performed. Further, because the Delta Exchange mechanism

normally has low overhead, special-purpose hardware to

support rollback efficiently may not be necessary.

The Delta Exchange mechanism has the added benefit of

permitting fast rewind capabilities. Much like an

efficient text editor that saves only the keystrokes

(i.e., changes to the text file), the Delta Exchange

mechanism saves the changes to the simulation objects.

These changes (stored in events) can be written out to

files. The simulation can be rewound by restoring the

changes in reverse order. This is like hitting the undo

button in a text editor. The rewind capability can be

used for restarting the simulation after crashes, check-

point restarting, what if analysis, or playback.

20 Processing an Event: Phase 2

25

30

In the third step, further processing is done for an

event. This usually involves cleaning up memory or

sending external messages out to graphics. This step is

performed only after the event is known to be valid, in

other words, when there is no possibility for the event

to be rolled back. This step is usually performed much

later in time than the previous two steps. The simulation

programmer should not assume that the simulation object

contains valid state information when processing in Phase

2. The processing done in this step must not change the

state variables of its simulation object.

35

Managing the Event List

5

i0

15

20

25

13

One of the most time-consuming tasks in supporting

discrete event simulations can be managing the event

list. Managing a sorted list of future events can cripple

the performance of low-granularity simulation. In

parallel discrete event simulations, such management

often leads to superlinear speedup. SPEEDESmakes use of

a new technique for handling the event list.

The basic idea of this new technique is that two lists

are continually maintained. The primary list is sorted,

while the secondary list is unsorted. As new events are

scheduled, they are put into the secondary list. The

earliest event scheduled to occur in the secondary list

is preserved. When the time to process this event comes,

the secondary list is sorted and then merged into the

primary list. The time stamp of this critical event is
sometimes called the event horizon. How the invention

processes event objects in successive cycles defined by

an event horizon is illustrated in Fig. 2, which is

discussed in detail below with reference to the

description of the Breathing Time Buckets simulation

protocol. Basically, in Fig. 2 events 20 generated

during one cycle of the simulation become pending events

22 during the next cycle. Each cycle only processes

those pending events 22a which do not occur beyond the

event horizon 24 of that cycle. Those pending events 22b

which occur beyond the event horizon are not processed

during the current cycle.

30

35

This simple approach for managing the event list is

faster than single-event insertions into linked lists. It

can also outperform some of the more complicated data

structures such as splay trees and priority heaps, if

enough events are collected in the secondary queue on the

average for each cycle.

14

Event Queue Objects and Multiple Protocols

5

In a SPEEDESsimulation, the user does not supply the

main program. The main program is provided by SPEEDES,

which, during initialization, reads in a standard file to

configure the simulation. The user can select the

synchronization protocol by modifying this file.

i0

15

SPEEDESsupports multiple-synchronization protocols by

creating an appropriate event queue object. Each protocol

has its own specific event queue C++ object, which is

created during initialization. Each event queue object is

then responsible for performing its specific

synchronization algorithm for the simulation. Event queue

objects must follow the rules for event processing (Phase

i, Delta Exchange, Phase 2).

2O

25

In the creation of C++ objects that make use of

inheritance, the lower base-class objects are constructed

before the higher ones. Thus, when the main program

crates one of the event queues, the generic base-class

event queue object is constructed first. The constructor

of this base-class automatically calls the user code that

creates all the simulation objects and initializes them

with their starting events. This is how the user plugs

his code into the SPEEDES environment.

3O

After initialization, the main program in SPEEDES loops

until the simulation is done. During each loop, four

virtual functions illustrated in Fig. 3 are called for

the event queue object:

35

I .

2.

PROCESS PHASE 1

SIMULATION TIME

3. PROCESSPHASE 2

4. EXTERNALBLOCKING

15

i0

15

Phase 1 and Delta Exchange event processing is performed

for events during the event queue PROCESSPHASE 1 method.

Many events are typically processed in this step. When it

is determined that enough events have been processed and

that it is time to synchronize, the global simulation

time (for example, Global Virtual Time [GVT] in Time

Warp) is then determined in the SIMULATION TIME method.

Cleanup, synchronous message sending, and further event

processing are done in the PROCESS PHASE 2 method. If the

simulation expects the outside world to send a message

that must arrive before the simulation can continue,

blocking is done in the EXTERNAL BLOCKING method.

Message Sending

20

SPEEDES uses both synchronous and asynchronous message

sending approaches. Time Warp uses the asynchronous

style, while the other algorithms synchronously send

their messages.

25

30

35

There are two extremes for event processing and message

sending. In one extreme, events take very little cpu time

to be processed; message sending is the bottleneck. Here,

synchronous message sending wins because it is faster. In

the other extreme, events take a very long time to be

processed; event processing is the bottleneck. In this

case, message sending delays do not affect the

simulation's performance and it does not matter whether

synchronous or asynchronous approaches are used. However,

somewhere between these two extremes is a boundary where

one approach may be better than the other.

16

SPEEDESSIMULATION PROTOCOLS

5

i0

As illustrated in Fig. 3, the SPEEDESmain program

interfaces through a generic event queue with any one of

several different protocols, including the well-known

protocols of time warp event queue, time bucket event

queue and sequential event queue. This section briefly

discusses the well-known parallel simeulation protocols

supported by SPEEDES, while the next section explains the

new parallel simulation approach, Breathing Time Buckets,

in more detail. Following the discussion of Breathing

Time Buckets, we describe some new protocols that look

promising for efficient parallel simulation.

15 Sequential Simulation

2O

25

When SPEEDESruns on one node, the sequential event queue

object is automatically created. All the overhead for

message sending and rollback is removed. The user still

generates messages for his events, but they are not

queued up for transmission. Instead, they are turned into

events directly. The Delta Exchange mechanism is also

used. The combined overhead for message generation and

Delta Exchange has been observed to be less than 1% for

low-granularity events (i.e., events in which the system

overhead dominates).

Time Bucket Synchronization

30

35

One of the simplest approaches to parallel simulation

makes use of the causality principle. As long as a

minimum time interval, T, between events and the events

that they can generate is known, the simulation can

proceed in time cycles of duration T. This approach is

called Time Bucket Synchronization. It has the important

5

i0

17

property of requiring very little overhead for

synchronization. Each node must synchronize with all the
other nodes at the end of every cycle, after which all

nodes increment their simulation time in unison by the

amount T.

Despite the low synchronization overhead, the Time Bucket

approach has some drawbacks. The cycle duration T must be

large enough for each node to process enough events to

make parallel simulation fidelity. Load balancing over

the small time interval T can also be a problem.

15

In most discrete event simulations, the time step T is

unknown or, even worse, has the value zero. Thus,

simulations that can run under time Bucket

synchronization are a subset of all parallel discrete

event simulations.

2O

25

30

35

Time Warp

The Time Warp algorithm has been heavily discussed in the

literature. SPEEDESoffers a unique set of data

structures for managing the event processing in its

version of Time Warp.

When an event is processed, it may generate messages.

These messages are immediately handed to the TWOSMESS

server object supported by SPEEDES. This object assigns a

unique ID to the outgoing messages and stores the

corresponding antimessages back in the event. Note that

antimessages are not complete copies of the original

message, but are very short messages used for

bookkeeping. All of this is done transparently for the

user.

5

i0

15

20

18

Referring now to Fig. 4, when a message arrives at its

destination, an antimessage is created and stored in the

TWOSMESShash table. The hash table uses the unique

message ID generated by the sender. An event is

automatically constructed from the message and is handed

to the Time Warp event queue object. This event is put in

the secondary queue if its time stamp is in the future of

the current simulation. Otherwise, the simulation rolls

back.

Rollback restores the state of the simulation object,

which means calling the Delta Exchange method for all the

events processed by that object in reverse order and

generating antimessages. Aggressive cancellation is used.

Referring now to Fig. 5, antimessages are stored in the

events and are simply handed to the TWOSMESSobject. When

these antimessages arrive at their destinations, the hash

table already contains pointers to the events that they

created. Those events are then rolled back (if already

processed) and marked as not valid.

25

30

35

Periodically (typically every 3 seconds of wall-clock

time), the Global Virtual Time (GVT) is updated. The GVT

represents the time stamp of the earliest event

unprocessed in the simulation. One problem in determining

the GVT is in knowing whether messages are still floating

about in the system. This problem is solved by having

each node keep track of how many messages it has sent and

received. Fast synchronous communications are used to

determine when the total number of messages sent equals

the total number of messages received. When this

condition is true, no more messages are in the system and
the GVT can be determined.

5

19

After the GVT is known, cleanup is performed. The memory

for all processed events with time stamps less than or

equal to the GVT is handed back to the SPEEDESmemory

management system (free lists). The hash tables are also

cleaned up, as their antimessages are no longer needed.

BREATHING TIME BUCKETS

i0

15

2O

The original SPEEDESalgorithm (Breathing Time Buckets)

is a new protocol or windowing parallel simulation

strategy with some unique properties. Instead of

exploiting lookahead on the message receiver's end or

using preknown or calculable delays, it uses optimistic

processing with local rollback. However, unlike other

optimistic windowing approaches, it never requires

antimessages. Local rollback is not a unique concept

either. However, the Breathing Time Buckets algorithm

allows full connectivity between the simulation objects

(often called logical processes).

Fundamental Concepts

25

3O

35

The essential synchronization concept for Breathing Time

Buckets is the causality principle. Like the Time Bucket

approach, the Breathing Time buckets approach processes

events in time cycles. However, these time cycles do not

use a constant time interval T. They adapt to the

optimal width, which is determined by the event horizon.

Thus, in each cycle, the maximum number of causally

independent events (ignoring locality) is processed. This

means that no limiting assumptions are made that restrict

the simulation as there are in the Time Bucket approach.

Deadlock can never occur, since at least one event is

always processed in a cycle.

i0

20

Referring now to Fig. 6, the event horizon is defined as

the time stamp of the earliest new event generated in the

current cycle (much like the event list management

previously described.) Processing events beyond this

boundary may cause time accidents. Thus, events processed

beyond the event horizon may have to be rolled back. The
local event horizon for a node is defined as the time

stamp of the earliest new event generated by an event on

that node. The global (or true) event horizon is the

minimum of all local event horizons, as illustrated in

Fig. 6. The event horizon then defines the next time step

T.

15

20

To determine the global event horizon, optimistic event

processing is used. However, messages are released only

after the true event horizon is determined, so

antimessages are never required. Rollback simply involves

restoring the object's state and discarding messages

erroneously generated. Thus, the Breathing Time Buckets

algorithm eliminates all the potential instabilities due

to excessive rollback that are sometimes observed in Time

Warp. This will be demonstrated later in this paper.

25

3O

Determining the Event Horizon

Determining the event horizon on a single processor is

not very difficult. It is much more challenging to find

in parallel. For now, assume that each node is allowed

to process its events until its local event horizon is

crossed. At this point, all nodes have processed event

up to their local event horizon and have stopped at a

synchronization point.

35
The next step is for node to synchronously communicate
its value for the local event horizon. The minimum of

5

i0

15

21

all these is defined to be the global event horizon. In

other words, the earliest time stamp of a message waiting

to be released is identified. The global event horizon

is then used to define the global simulation time (GST)

of the system.

After the GST is defined, all events with time stamps

less than or equal to this time are made permanent. This

means that messages which were generated by events that

had time stamps less than or equal to the GST are routed

through the hardware communication channels to the

appropriate node containing the destination object. When

messages arrive at their destination nodes, they are fed

into the event library, which converts messages into

events.

2O

25

30

35

These new events are not immediately inserted into the

event queue. Rather, they are collected in a temporary

queue as described previously. When all the new events

are finally created, the temporary queue is sorted, using

a merge sort algorithm that has mlog(m) as a worst-case

sort time (for m events). After the temporary queue of

new events is sorted, it is merged back into the local

event queue.

There is an obvious problem with what has been described

so far. Some of the nodes may have processed events that

went beyond the GST (i.e., the true event horizon). An

event, which is attached to a locally simulated object,

must be rolled back if any of the newly generated events

affect the same object in its past. Rollback involves

discarding the messages generated by the event (which

have not yet been released because the time stamp of the

event is greater than the GST) and exchanging state

variables back with the stimulated object. Thus,

22

rollback overhead should remain small. Antimessages are

never needed because bad messages (which would turn into

bad events) are never released.

5 Asynchronous Broadcasts

i0

15

If the Breathing Time Buckets algorithm ended here, it

would have a limited number of applications.

Pathological situations could arise if the algorithm was

not modified. For example, Figure 7 shows how an

unbalanced work load could affect performance. The

problem with Breathing Time Buckets as presented so far
is that all nodes wait for the slowest node to finish.

modification to the basic algorithm is needed to

circumvent this problem.

A

2O

25

3O

A simple mechanism to solve this problem incorporates an

asynchronous broadcast mechanism that tells all the nodes

when a local event horizon is crossed, and is illustrated

in Fig. 8. When one node crosses its local boundary, it

broadcasts this simulation time to all the other nodes.

when a node receives one of theses broadcast messages, it

may determine that it has gone beyond the point of the

other node's boundary; thus, it should stop processing.

ON the other hand, the node may not have reached that

time yet, so processing should continue. It is very

likely that the first node to cross its local event

horizon (in wall-clock time) has a greater value for this

boundary than another node. If this happens, a second

node will broadcast its time as well. Multiple

broadcasts may occur within each cycle.

35

It is important to get a proper view of the broadcast

mechanism. Runaway nodes that process beyond the true

event horizon while the rest of the nodes are waiting can

23

ruin the performance of the Breathing Time Buckets

algorithm unless something is done. The proper view of

the broadcast mechanism is that it aids in speeding up

the processing by stopping runaway nodes. The

asynchronous broadcasts are in no way required by

Breathing Time Buckets to rigorously synchronize event

processing. The broadcasts function in the background

and only aid in enhancing performance.

i0 Non-Blocking Sync

15

2O

With the asynchronous broadcast mechanism designed to

stop runaway nodes, the Breathing Time Buckets algorithm

becomes a viable solution to support general-purpose

discrete event simulations. However, there still is room

for improvement. It is wasteful for nodes that have

crossed their local event horizon to sit idle waiting for

other nodes to complete their processing. Note that this

problem always arises in the world of synchronous

parallel computing. It is important to evenly balance

the work load on each node so the time spent waiting for

the slowest node to finish its job is minimized.

25

30

35

The Breathing Time Buckets algorithm, as described so

far, suffers from this same "waiting" problem. An

observant simulation expert might ask, "Why do you insist

on stopping just because the event horizon has been

crossed?" In fact, there really is no reason to stop

processing events until all the nodes have crossed the

horizon! Erroneously processed events can always be

rolled back without much overhead (because no

communications are involved). Therefore, it does not

hurt to continue processing events beyond the horizon.

It might pay to be optimistic and hope that he processed

events with time stamps greater than the event horizon do

24

not have to be rolled back. The trick then is to

efficiently find out when all the nodes have finished.

i0

One way to support this needed mechanism would be force

each node to send a special message to a central manager

when it thinks that it has crossed the event horizon.

When the central manager receives this message from all

nodes, it broadcasts a message back to the nodes saying

that it is time to stop processing events for this cycle.

This approach is used when running Breathing Time Buckets

on a network for Sun workstations over Ethernet. This

mechanism has the good characteristic of being portable.

However, it is not scalable to large machines.

15

2O

Other ways to solve this problem exist, using scalable

asynchronous control messages, shared memory, or

reduction networks, but a better solution would be to use

a global hardware line. The idea here is that when each

node crosses the event horizon, it sends a signal on a

hardware global line. when all the nodes have done this,

an interrupt is simultaneously fired on each node and a

flag is set telling us that all nodes have crossed the

event horizon.

25

3O

While the Breathing Time Buckets algorithm does not

require global hardware lines for synchronization, making

use of the global line has been observed to enhance the

performance by as much as 15% over the asynchronous

control message approach.

Local Rollback

35

One further improvement can be made to the Breathing Time

Buckets algorithm. Events that are generated locally

(i.e., messages that do not leave the node) do not have

5

25

to participate in the event horizon calculation. Rather,

they can be inserted into the event list and possibly be

processed within the same cycle. This capability is very

important for simulations in which events schedule future

events for the same object. A good example of this would

be a preemptive priority queueing network. Supporting

this capability involves more overhead, but it may be

essential for a large class of simulation applications.

i0 INTERACTIVE SPEEDES

15

This section will discuss the difficulties of supporting

interactive simulations. We will then describe how

SPEEDESsolves these problems.

Simulation Output

2O

In an interactive parallel simulation involving humans,

information pertaining to events that have been processed

is released to the outside world. Humans can view these

data in various forms (graphics, printouts, etc.).
Humans are then allowed to interact with the simulation

based on information that was previously released.

25

3O

When a simulation runs on a single computer, using a

sorted event queue, events are processed in their correct

time order. If the results of processed events were

released to the outside world, then they would naturally

be viewed in their correct time order. This is not true

for parallel simulations.

35

In parallel simulations that operate in cycles, each node

has its own local event queue. Assume that m events are

processed globally for a particular cycle and that there

are N nodes. Then each node has m/N locally processed

26

events (assuming perfect balance). While these processed

events are maintained in their proper time order locally,

further steps are required to merge them into a single

globally sorted list. The steps to do this on a parallel

computer are illustrated in Fig. 9 and are as follows:

i0

15

2O

The time cycle boundaries _ and _+i are known. Assume a
flat distribution for the time stamps of the processed

events. Each node breaks up its processed event queue

into N sublists, each of length m/_. Every sublist

passes to a different node k, where k = 0,1,2,... N-I.

The lower time boundary of each sublist residing on node

k is % + k (%+I- %)/N. All events in each of the

sublists on node 0 have time stamps less than those on

node i, etc. At this point, each node performs a local

merge sort of its N sorted sublists using a binary search

tree. Merging the N sublists on each node takes (m/N)

lo_N steps. Thus, the time for merging these lists can

written as:

T merge = (m/N) log2N

25

It would appear that parallel simulations require an

additional amount of work to send globally sorted event

information out to the external world. However, there is

more to consider.

3O

35

Imagine a simulation in which each event generates a

single new event. If m events are globally processed in

particular cycle, then each node will receive, on the

average (assuming perfect balance), m/N new events.

Thus, m/N new events must be inserted back into each

local event queue. This can be accomplished by first

sorting the m/N events and them merging them back into

the local event queue.

27

5

I0

Sorting m events for a simulation running on one node

takes m lo_(m) steps. If perfect speedup is attained,

one might naively expect it to take [m lo_(m)]/N steps

for N nodes. However, each node's performing the task of

sorting m/N events only takes (m/N) lo_(n/N) steps.

There is an apparent superlinear speedup in maintaining

the event queue. The amount of time it takes to sort m

events on N nodes is better than a factor of N compared

with the time on one node. The time for maintaining the

event queue can also be written as:

T sort = (m/N) [log2(m) - log2N]

15

20

When combining Tmerge and Tsort, the superlinear speedup

is exactly cancelled. There is no contradiction to the

theoretical upper bound for parallel speedup. The best

way to understand the apparent superlinear speedup (which

is always present in parallel simulations that use local

event queues) is to realize that information is lost if

the processed events are not regathered into a single

globally sorted list for the purpose of output.

25

30

Simulation Tie Advancement Rate (STAR) Control

If humans are allowed to interact with a simulation while

it is in progress, then it is important for the

simulation to advance smoothly in time. In other words,

the Simulation Time Advancement Rate (STAR) should be as

close to a constant as possible, and equal to one if

real-time interaction is desired. Interactive parallel

simulations must be able to control the advancement of

simulation time with respect to the wall clock.

35 One important principle in controlling the STAR is that

i0

28

it can always be slowed down; it is always tougher to

speed it up. For example, if a simulation can run two

times faster than real time (from start to finish), then

pauses can always be added to the simulation to slow it

down to real time if desired, as illustrated in the graph

of Fig. i0. While the average STAR may run two times

faster than real time, the instantaneous STAR at any

given time can vary. At times, the instantaneous STAR

may be slower than real time. Three important points

must be made:

15

20

25

3O

35

First, the parallel simulation algorithm should run as

fast as possible. For example, if the same simulation

could run with a STAR equal to ten, using a different

approach, then slowing it down to real time would be

easier than when using algorithm with a STAR equal to

two. The first and most important goal for any

interactive parallel simulation approach should be to run

as fast as possible.

Second, a mechanism to smooth the STAR is needed. If the

simulation is allowed to progress significantly into the

future, the results of the simulation can be buffered.

The results can then be released to the external world

smoothly in time (i.e., throttled by the wall clock).

However, when the outside world interacts with the

simulation operating in this manner, rollback may be

required to bring the simulation back to the time that

was perceived by the user. Rollback due to external

interactions requires saving the state of all simulated

objects at least as far back in time as when the

interaction occurred. If the simulation is allowed to

progress too far into the future, an enormous amount of

memory will be required for rollback state saving.

5

i0

29

Another option for smoothing the STAR is to process event

sin large cycles and then, as a rule, not allow external

interactions to occur until the next cycle. If the

cycles are large enough, then the STAR will be smoothed.

The cycles must be throttled by the wall clock to

maintain the desired STAR. However, large cycles may

force an undesirable time granularity into the

interactive simulation, and the user may not be able to

interact as tightly with the simulation as desired.

Furthermore, the information for each processed event

coming from the simulation should also be throttled by

the wall clock to avoid a choppy-looking simulation.

15

20

Third, regardless of whether or not the simulation keeps

up with the desired STAR, rigor should always be

maintained. Simulation errors (or time accidents)

resulting from an attempt to control the STAR should

never be allowed to happen. Setting the desired STAR to

infinity should have the same meaning as letting the

simulation run as fast as possible.

25

3O

If the simulation cannot keep pace with the desired STAR,

then there should be no pauses to throttle the

simulation. If the simulation operates in cycles, then

it could possibly catch up in the next cycle (and should

be allowed to). A resolution for the desired STAR should

be specified to determine acceptable performance (in

other words, how far the simulation can lag behind the

desired STAR and still be within specs).

Human Interactions

35

In the past, it has been very difficult to support

interactive parallel discrete event simulations.

Consider, as an example, the Time Warp algorithm as

5

3O

implemented in SPEEDES. In Time Warp, each node keeps
track of its own simulation time. Because of the

optimistic event processing, there is no certainty of

correctness beyond the GVT. Therefore, Time Warp can

release to the outside world only those message that have

time stamps less than or equal to the GVT. Note that we

assume that the outside world (e.g., graphics, humans,

and external programs) cannot be rolled back.

i0

15

If only viewing the results of a simulation were desired,

there would be no problem. Output from the simulation

could be buffered and released only at GVT update

boundaries. However, when the outside world tries to

interact with the simulation, the situation becomes more

difficult.

20

25

3O

Humans like to interact (see the COMMAND section) with

the parallel simulation based on the output that has been

received (see the QUERY and MONITOR sections). The

earliest time the user can interact with the simulation

is at the GVT. Otherwise, the law governing external

rollbacks would be violated. The goal for interactive

parallel simulations is to allow the human to interact as

tightly with the simulation as possible.

In the SPEEDES implementation of Time Warp, an unexpected

external message received from the outside world can

cause an object to roll back to the GVT. This allows the

tightest interactions. Because conservative algorithms

(such as Time Bucket synchronization) do not support

rollback, they do not permit the same tight interactive

capabilities, as illustrated in Fig. II. This is one of

the major drawbacks of conservative algorithms.

35 External Modules

31

Referring now to Fig. 12, interactive SPEEDES

accommodates external interactions by using a host

program 30 to service communications between the central

parallel simulation 32 and the outside world. The host

program allows external modules 34 to establish

connections to the central parallel simulation using, for

example, UNIX Berkeley Sockets.

i0

15

2O

25

One important characteristic of the SPEEDES approach is

that external modules (i.e., external computer programs

that would like to be part of the simulation) are not

required to participate in any of the high-speed

synchronization protocols. Instead, a hybrid approach is

used. This is extremely important for interactive

simulations over networks that have high latencies. The

high-speed central simulation runs on the parallel

computer and provides control mechanisms to the outside

world.

External modules view the parallel simulation much as a .

central controller views it. The external modules are

still event-driven, but they must not communicate too

often with the central simulation. Otherwise, the

simulation will be bogged down by the large communication

latencies.

3O

Interactive SPEEDES does not make any assumptions

concerning the number of external modules or human users

participating in the simulation. In fact, the number can

change during the course of simulation. The connection

procedure simply involves establishing a communication

socket to the host.

35 QUERY

32

5

A very useful capability interactive SPEEDESsupports is

the ability to QUERYthe stat of simulation object while

the simulation is in progress. The simulation can be

viewed as a large database of object that change in time.

The QUERYfunction allows an external user to probe into

the objects of the simulation to determine how they are

performing.

i0 MONITOR

15

The MONITORcapability allows the state of a particular

simulated object to be monitored as its events occur.

The effect of every event for that object can be sent

back to the external monitoring module. This can be

extremely useful as an analysis tool for studying the

behavior of various components within the parallel

simulation.

20 COMMAND

25

The COMMAND function supported by interactive SPEEDES

allows a user to send a command (or generate an event) to

a simulation object. This permits users to change the

simulation while it is in progress. Commands should work

in conjunction with the QUERY and MONITOR functions so

the user can change the simulation based on what is

perceived.

30 EXTERNAL MODULE

35

The last interactive function SPEEDES supports is the

control of an EXTERNAL MODULE from within the parallel

simulation. It is assumed that external modules are

remote objects that tend to have long opaque periods

i0

33

between communications. The are controlled by an object

simulated on the parallel computer. The external module

attaches itself to a simulation object and then is

controlled by that object.

External modules do not participate in the high-speed

synchronization algorithms supported internally within

SPEEDES. Rather, they are given input messages with a

start time, an end time, and their data to process. When

the external module has completed processing its data, a

done message is sent back to the controlling simulation

object. This causes another message to be sent back to

the external module, and processing continues.

15

2O

25

3O

If the done message has not arrived before the

appropriate simulation time, the parallel simulation

(which is running faster than the external module) waits.

If the done message arrives early, the external module

(which is running faster than the parallel simulation)

will have to wait for the simulation to catch up before

it receives its next message. When an external module

disconnects from the simulation (whether on purpose or

accidentally), this blocking mechanism is automatically

removed.

While the invention has been described in detail

with specific reference to preferred embodiments thereof,
it is understood that variations and modifications

thereof may be made without departing from the true

spirit and scope of the invention.

i0

15

20

25

SYNCHRONOUSPARALLEL SYSTEMFOR EMULATION
AND DISCRETE EVENT SIMULATION

ABSTRACT OF THE INVENTION

A synchronous parallel system for emulation

and discrete event simulation having parallel nodes

responds to received messages at each node by generating

event objects having individual time stamps, stores only

the changes to the state variables of the simulation

object attributable to the event object and produces

corresponding messages. The system refrains from

transmitting the messages and changing the state

variables while it determines whether the changes are

superseded, and then stores the unchanged state variables

in the event object for later restoral to the simulation

object if called for. This determination preferably

includes sensing the time stamp of each new event object

and determining which the new event object has the

earliest time stamp as the local event horizon,

determining the earliest local event horizon of the nodes

as the global event horizon, and ignoring events whose

time stamps are less than the global event horizon. Host

processing between the system and external terminals

enables such a terminal to query, monitor, commmand or

participate with a simulation object during the

simulation process.

-AI-

APPENDIX A

The following appendix is the listing of the C-

language computer code used to implement the invention

using the breathing time buckets protocol.

-A2 -

"-)

.f_
0

C

t"

r_ LI.I I
c_

_'

R_

J

j _

_ 6

E .

-, _ -- _ _ _

.:_-_ "_ _ ._ ._ _ _-_ _ ._ .._

"_ _l _I

,_I

ctl
I

tn
I

ul

_ II

i

6

,
.u2

'_'6

1" "_ _

-A3 -

a_

E

¢)

J:

°_

6)

A

,5,-_ .

. _._- _ _ _=

E
a_

_ _,._

0

m

0

E

i

_11

_J

.N

0

A

II

,, _^XX,,

. .__

m

.=

o

_ ; o
•
,>,-a > ._

II _ II 0

sa

mm

e
I=

0

^

o "=

°. °"_
'

v

:_ V

-A4 -

-A5-

.Ei
r_

o

^ ._

"_.. ,w.W.. u
-.-._.+ ,, _

• / /

NASAc_s_No.Npo_/E"Y/Y;" _'

'i-Router

(3

_f

Generated

Events

Pending
Events

Generated
Events

Pending
Events

Generated
Events

Pending
Eve nts

[]

Cycle 1

[]

I I

I I I

I I I

I I

Time

Cycle 3 Time

FIG. 2

O.
_0

l.u

U,l

l,u

T==

W
a
0
Z

0

LU
a
0
Z

...."- !i!iiiiii

:::::::::::::::::::::::::::::-:-:.:-:.;.:

\ \
\

d
I'--4

I,Ll "'

W
o

,{ 0
z

0

w
a

,_ 0
z

q}

W W

I I I

J _.1 .J

I I I

I I I_i_'ili'_iiyiiii _i_i;iiiii iiii:iiiiiii;iii;i_
iili_ i!iii!?!iii_'i;i!i)i;ii!i!!!i!i!i11)ii _:.i)iiiii!!!)!!!_!!!ii!_iiiii;iiiiiii_;i_ii!i#!!i!!_i_i_i!!i1!_1_i!iiii_i_i)i:i_!_!}i_!iii!ii)ii!!i!_!iii_i_i_!fii_ii_;)i_i!_i!i_iii!i_i!ii

i_ _i':iiii:_Nii_i_iii!iiiiiiiiiii_i_ili!ililli............"""'.............."'".....................'............
;iii0 ii_i:._#_##ii_iii=_=_ii_#_iiii_ii_ii_iiiiiii_i_iii_iiiiii_i_i_i_ii_iii_ii_ _ Ii

============================:::::::::::::::::::::::::::::::::::::::!i:::i_:;ii::i::ii;i::ii;!ill_i_::_::!iiii!iiii;:!::_::i::_i_ii::iiii!::i::i!i!::i:;::_ili!:;i::i

Z
W
>
W

\ \ \

\ \ \ w
0

W_2

NASA Case No. NPO [_Qc[I Y-'/-C _(

Start of
Cycle

Node 0 Events Node 1 Events

Global
Event

Horizon

Local
Event

Horizon

Local
Event

Horizon

Messages
Future Events

®
®

®

Simulation Time

®

©

Messages
Future Events

FIG. 6

l
zc::5 o

I-

I.--

0
I--

l

L

..__ ¢'q

_o
_03 Z

,,, _=8
_¢,0 Z

I.-

0
!-.-

.__0

O3

Z,-. 0

0

"0
0
Z

7O
0

Z

q)
7O
0
Z

O3
¢)

"10
0
Z

f_i_ _

I--

0
I--

11
0

t-
O') •""

o_
(i) (D

-Or"
0 ""
z£._

I--

o o o
r- r- t--
c/) uI U)

8

°""°z°° CO

I-.

o o
r-- r-

"o Or)
® ,.: I--.-I

E

-_- --_ z_z

U.

o "_
¢" e-

0 u_

e-t2 I_2 I_2
0 _'- 04 o3

0 0 0 0
Z Z Z Z

NASA C_seNo,NPO_.__':'//_"-"" "t '---(

Locally Sorted
Processed Events

Binary Tree
Merge Events

Globally Sorted
Processed Events

Node 0

Node 1

Node 2

Node 3

FIG. 9

NASA CaseNo.NPO--Z--E--_/ _/-/-c__%

I0

-_ 6

2

0

Desired STAR = 1

Could not keep up

Desired STAR = oo

0 1 2 3 4 5 6 7 8 g 10

Simulation Time

FIG. i0

NASA Case No. NPO /_//'5"-__._"

Optimistic Roll-Back Conservative Time Driven

Earliest Response ' Response

Simulation

Time

Event
Ti Ti+1 Ti+2

FIG. 11

Node 0

Parallel Computer

FIG. 12

